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Stimulus-dependent correlations in stochastic networks
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RWCP Novel Function SNN Laboratory, Department of Biophysics, University of Nijmegen, Geert Grooteplein 21,
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~Received 27 September 1996; revised manuscript received 8 January 1997!

It has been observed that cortical neurons display synchronous firing for some stimuli and not for others. The
resulting synchronous cell assemblies are thought to form the basis of object perception. In this paper this
‘‘dynamic linking’’ phenomenon is demonstrated in networks of binary neurons with stochastic dynamics.
Analytical treatment within the mean field theory and linear response theory is possible and is compared with
simulations. We establish that correlations are a sensitive function of the spatial coherence in the stimulus. We
discuss the possibility to use these correlations as a mechanism for scene segmentation.
@S1063-651X~97!07705-2#

PACS number~s!: 87.10.1e, 02.70.2c, 05.50.1q, 87.22.As
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I. INTRODUCTION

It is well established that the behavior of sensory neur
in the visual cortex can be described by a receptive field
neuron is sensitive to certain specific stimuli and not to o
ers@1#. It is often assumed that the role of individual cells
to representlocal visual features, such as edges, corne
velocities, colors, etc. These representations may coexis
several length scales. The representation of local recep
fields or features is encoded in the feed-forward syna
connections of individual neurons. This representation
thought to be an efficient information-theoretic description
the local structure of images@2#.

Objects are generally believed to be represented by a
lection of local features. The neurons that represent the l
features of the object become active and constitute a
called cell assembly@3#. The cell assembly is a neural rep
resentation of the object.

Since a visual image generally contains many objects
multaneously, many cell assemblies can be active at
same time. Therefore some labeling mechanism must exi
distinguish whether active neurons belong to the same
assembly or to different cell assemblies. There exist vari
proposals to facilitate such a mechanism. One proposa
based on the synchronization of the firing patterns betw
neurons@4–6#. It is assumed that the resulting synchrono
subpopulations of neurons form the basis of segmenta
and object perception@7,8#.

There is some experimental evidence that neurons in
visual cortex display synchronous firing for some stimuli a
not for others@9–12#. In particular, some studies show th
synchrony depends on the amount of conflict in the stimu
presented@13,14#. Thus if features are part of the same o
ject, the corresponding neurons synchronize. If the same
tures are not part of the same object, no such synchroniza
occurs. The observed synchrony has in fact two compone
one is the presence or absence of a central peak in the c
correllograms@11,14#. An additional aspect is the presen
or absence of an oscillatory component in the au
correllograms and crosscorrellograms@9,10#. Both phenom-
ena could play a functional role as a mechanism for fea
linking.
551063-651X/97/55~5!/5849~10!/$10.00
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So far, most models have been based on oscillations
have addressed two key questions. One question is ho
implement dynamic feature linking, i.e., how synchrony b
tween neurons can arise for some stimuli and not for oth
In @15# a network of bursting neurons is considered. In th
model, stimulus-dependent assembly formation is based
fast synaptic modulations. References@16–18# introduce a
network of pairs of nonlinear oscillators which models
orientation column. The network involves specific delay
synchronizing and desynchronizing connections that can
learned. Reference@19# discusses a network of integrate-an
fire neurons organized in orientation columns. Both the
models display stimulus-dependent assembly formation
the sense that oscillations synchronize for spatially cohe
stimuli and can be made to desynchronize for incoher
stimuli, without changing the synaptic strengths. Simi
findings are reported in@20#. In @21# an overview is given of
various network models that can give rise to oscillatory b
havior.

In @22# a nonoscillatory model is introduced and corre
tions between rate coded neurons are studied. It is shown
correlations are strongest for neurons firing neither too
nor too slow. As a result, correlation based couplings dep
on the mean firing activities of the two neurons involved, a
thus provide in principle a mechanism for feature bindin
This property will also emerge in the present paper, but
the context of binary neurons instead of rate coding. T
issue of how the stimulus affects the correlations is not
plored in @22#.

The second question is how synchrony can play a fu
tional role for scene segmentation when various objects
present. An attractive model for representing various obje
in a visual scene in a translationally invariant manner w
proposed by@23#. The translational invariance is achieved b
learning strong lateral connections encoding rigid relatio
between object features all over the retinal image. As a
sult, severalorbit assembliesare activated for each objec
which are detected by individual neurons in a separa
layer. An additional set of lateral couplings between the
neurons is defined. The result is, more or less, that excita
connections develop between neurons that both participa
the same object and inhibitory connections between neu
5849 © 1997 The American Physical Society
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5850 55H. J. KAPPEN
that participate exclusively in different objects. By assum
an oscillatory neuron model, segmentation of the image
number of objects is achieved in the temporal domain. T
model was given a solid computational basis and was a
lyzed theoretically in@24,25#.

In this paper we propose correlations that arise in n
works of stochastic binary neurons as a mechanism to
count for both feature linking and segmentation. Stocha
networks provide an attractive model for several reaso
Assuming detailed balance, the stochastic dynamics of th
networks leads asymptotically to the Boltzmann-Gibbs d
tribution. Therefore the effect of stimulus-dependent corre
tions can be analyzed in equilibrium in the mean field fram
work and the linear response theory. Such analysis is m
complicated or not possible for oscillatory models. This a
proach was first done in@26#, where~time-delayed! correla-
tions were studied in networks composed of several s
populations of stochastic binary neurons. The issue of h
the correlations depend on the stimulus was not addre
there.

Another advantage of the equilibrium formulation is th
it offers an immediate solution to learning based on cor
lated activity using the Boltzmann machine learning pa
digm @27# which has a clear information-theoretic bas
Learning in more complex networks involving various typ
of inhibition, causing competition in subnetworks, can
achieved using the approach outlined in@28#.

A third advantage of the proposed approach is that hig
order statistics may also play an important functional role
artificial networks. The experimentally observed stimulu
dependent~two point! correlations are only the simplest e
ample. The proposed Boltzmann machine neural networ
the simplest artificial system to study these phenomena.

Last, but not least, models based on oscillations tend
oscillate all the time. Setting up the dynamics such that
cillations arise under some conditions and not under othe
in general difficult. Therefore it is difficult to obtain featur
linking in these models. This problem was partly overco
in @18#. On the other hand, to obtain stimulus-dependent c
relations in stochastic models is quite straightforward, as
will see.

The proposed mean field treatment is different to wha
usually done in attractor neural networks@29,30#. Those
analyses are typically applied to networks for which in t
largeN limit the mean field predictions become exact~for
example, fully connected networks!. Therefore no non-
trivial correlations exist in these network
^s1s2 . . . sk&5m1m2 . . .mk , with mi the mean field activ-
ity. To obtain nontrivial correlations, one must therefore n
essarily look at models where the mean field prediction
only approximately correct. This is generally the case
models where the number of connections per neuron d
not grow proportional to the system size as well as in mod
with multimodal equilibrium distributions@26#. As an ex-
ample we consider here the simplest case of a t
dimensional Ising model.

The main result of this paper is to show how a network
binary neurons can display stimulus-dependent feature l
ing: correlations between neurons are a sensitive functio
the spatial coherenceof the stimulus, without altering the
synaptic connections between the neurons. We restrict
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analysis to objects that can be defined simply in terms of
amountof local supportive evidence in a compact region
the stimulus space. Examples of such objects are lines, b
or patches of constant texture: they involve only neurons
are sensitive to the same, or similar, feature values. A s
tially incoherent object has by definition a large variability
features. A spatially coherent object has a clear dominanc
one feature value. We will show how this behavior of featu
linking can be computed analytically. In addition, we w
briefly sketch how this mechanism can also account for s
mentation of objects in a scene.

In Sec. II we introduce the basic model of stochastic n
ron dynamics and its relation to spiking neurons. In Sec.
we introduce an abstract model for the visual cortex cons
ing of a two-dimensional grid of hypercolumns. Assumin
nearest neighbor interaction between neurons that code
identical feature values and absence of interactions betw
different feature values, the model factorizes as a produc
Ising models. In Sec. IVA we consider the case of a stimu
that consists of a number of spatially coherent patches
constant stimulus value. The model reduces to a simple t
dimensional Ising model with constant external field. W
review how the mean firing rate and the correlations can
computed as a function of the stimulus intensity and
lateral coupling, using mean field theory and linear respo
theory. We discuss how these results apply to feature link
when the image consists of several objects. In Sec. IVB
obtain our main result on dynamic feature linking showi
how the spatial coherence of an object, i.e., the amoun
local evidence in support of a spatially constant feat
value, affects the correlations between neurons. We perf
a perturbation expansion around the coherent solution of S
IVA. Our analytical and simulation results show the depe
dence of the mean firing rate and the correlations on
spatial coherence in the stimulus. In the discussion, we
briefly address the issue of segmentation and outline h
correlations can segment images consisting of several pr
ously learned objects. We plan to make full treatment of t
topic the subject of a future paper.

II. STOCHASTIC NEURON DYNAMICS

In this section we introduce our basic model. We u
binary neurons, which can be in two statessi561. In order
to arrive at an equilibrium description, we use so-called
quential dynamics~sequential dynamics is not strictly nece
sary for an equilibrium formulation, see, for instanc
@31,32#!. Neurons are randomly selected one at a time
discrete time steps. The probability of firing for neuroni ,
given the current state of the networksW, is

T~si851usW !5 1
2 @11tanh~b l i !#, ~2.1!

wherel i5( j51
n wi j sj1hi (hi denotes a threshold or extern

field contribution for neuroni ). After long times, the prob-
ability to observe the network in a statesW becomes indepen
dent of time. When the weights of the network are chos
symmetrically, this time-independent equilibrium distrib
tion is the Boltzmann distribution and is given by
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55 5851STIMULUS-DEPENDENT CORRELATIONS IN . . .
p~sW !5
1

Z
exp$2bE%, ~2.2!

with

E52
1

2(i , j wi j sisj2(
i
hisi

and

Z5(
sW
exp$2bE%.

Note that the form of Eqs.~2.1! and ~2.2! allows us to as-
sumeb51 without loss of generality.

Spike interpretation

In order to study synchronous firing we need a spike
terpretation of the binary neurons. Updating occurs one n
ron at a time at discrete time stepskt0 , k51, . . . asshown
in Fig. 1. Let the neuron that is updated at iterationk be
denoted byj (k). Let yi(k)51,0 denote whether or not neu
ron i spikes at iterationk. Thus yi(k)51⇔@si(k)51
` j (k)5 i #.

For large networks, each neuron is updated approxima
every nt0 seconds, withn the number of neurons in th
network. If we choosent05t, with t fixed of the order of
the refractory period of the neuron, every neuron is upda

FIG. 1. Spike interpretation for network of stochastic bina
neurons for the simple case ofn53. Time for update of the neuron
states is discretized ast5kt0 , k51, . . . . Topline: For eachk one
neuronj (k) is chosen at random. Bottom three lines: Neuronj (k)
is updated using Glauber dynamics~solid horizontal lines!. The
statesi of each neuron remains unchanged when other neurons
updated~dashed lines!. Spikes are emitted when the neuron upd
and the new state issi51 ~vertical solid lines!.
-
u-

ly

d

approximately every refractory period. For largen, the aver-
age number of spikes emitted betweent andt1t is given by

(k51
n ^yi(k)&5(1/n)(k51

n 1
2@si(k)11#' 1

2 @si(t)11#. In the
last step, we have made the assumption that the probab
of firing is approximately constant on the fast time scalet.
The averagê & is over possible random choices ofj (k) only
and not over ensembles of networks as is done in Eq.~2.2!.
Thus we can interpretsi(t)561 as ‘‘one or no spike emit-
ted in the interval@ t,t1t#,’’ respectively. By construction,
no more than one spike can be emitted in this time inter
whent is chosen as the refractory period.

Therefore in terms of spikes the dynamical rule Eq.~2.1!
becomes that the neuron integrates all incoming signals w
zero time delay over a timet and each incoming spike give
a contributionwi j to the postsynaptic potential. This spik
interpretation is consistent in the sense that first translatin
spin statesW(t) to a spike state and then performing spi
dynamics yields the same result as first performing spin
namics, Eq.~2.1!, and then translating a spin state in a spi
state.

III. ARCHITECTURE

Experimental findings indicate that neurons in the vis
cortex that encode similar features have a larger probab
of being connected than neurons that encode dissimilar
tures. In addition, these connections are short range and
probability to find a connection decays with distance.~See
@33# for orientation selectivity,@34# for color selectivity.!
Neurons that encode for different features are presumed t
less connected. Here we will take a simplified approach
assume~1! that features can take a discrete number of val
a51, . . . ,m, ~2! that neurons encoding for different featu
values are not connected, and~3! neurons encoding for the
same feature value at neighboring retinal positions are c
nected with excitatory symmetric connectionsw. Thus the
model becomes a product of independent Ising models,
for each feature valuea.

The equilibrium distribution of the feature detecting ne
ronss in feature layera, given a stimulusx, is given by

pa~sux!5
1

Za~x!
expS 12(i , j wi j sisj1(

i
hi ,a~x!si D .

~3.1!

si561, i51, . . . ,n denote the firing of the neuron with
feature preferencea at grid locationi . wi j is the connectivity
matrix, which isw between nearest neighbors in the grid a
zero otherwise.

x denotes the external stimulus, i.e., it consists of a tw
dimensional array of pixel values.hi ,a(x) describes the
stimulus dependence of the neuron with feature prefere
a at grid locationi on the stimulusx. It is well known that
nearby neurons in the cortex have overlapping recep
fields. As a result, the sensory activity reaching nearby n
rons can generally not be varied independently. Howev
here we choose to ignore this fact and assume that the st
lus at each grid location can be varied independen
x5x1 , . . . ,xn , andhi ,a(x)5ha(xi).

Although sensory neurons have a preferred stimulus,
preference is usually not very specific~coarse coding!. That

re
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5852 55H. J. KAPPEN
is, neurons in layera can have graded responses depend
on the amount of overlap with the stimulus. In our model
will ignore coarse coding. We assume that the stimulusxi is
either compatible with featurea, and ha(xi)5h1 or xi is
incompatible with featurea, andha(xi)5h2 . In the rest of
the paper, we will analyze only layera and drop the index
a. For this layer, only the presence or absence of fea
valuea at locationi is relevant. Therefore we will redefin
xi561 to indicate the presence or absence of featurea at

location i , i.e.,ha(xi)5
1
2 (11xi)h11 1

12 (12xi)h2 . h2 can
be interpreted as the neural threshold andh1 as the sum of
the external stimulus and the neuron threshold.

IV. STIMULUS-DEPENDENT CORRELATIONS

Consider a visual stimulus that may contain various
jects. It is a basic assumption of the present study that
jects are detected through the cooperative effect of the ex
nal input and the lateral excitation or inhibition. Thus obje
are ‘‘encoded’’ in the lateral connectivity structure of th
network in the sense that if the stimulus is ‘‘sufficiently sim
lar’’ to the lateral structure the neurons involved in the stru
ture will fire synchronously.

In the simple Ising model as introduced in the preced
section, connections are only between nearest neighbors
identical feature value, which implies that objects a
‘‘patches’’ of constant feature value, as shown in Fig. 2.
coherentobject is therefore a patch of constant features.
coherence arises when a subset of the stimulus elicits o
feature responses. The coherence is a spatial property o
stimulus and measures the amount of local evidence in fa
of the hypothesis ‘‘patch of feature valuea is here.’’ A
family of stimuli is considered, such thatp(xi61)5p6 .

Thusp15 1
2 corresponds to a fully incoherent stimulus a

p151 corresponds to a fully coherent stimulus.
In this section we will study how the synchrony depen

FIG. 2. In the simple Ising model, connections are only betwe
nearest neighbors with identical feature value, which implies
objects are ‘‘patches’’ of constant feature value. Stimulus value
the stimulus layer only affect neurons at the same location in
feature layer~s!. In regions where the stimulus valuexi5a ~dark
areas! the local field contribution to neuronsi in layera is h1 . In
the remaining regionsxiÞa ~light areas! and the local field contri-
bution to neuronsi in layera is h2 .
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on the parameters in the network,w, h1 , andh2 , and on
the coherence of the stimulus. We first consider in Sec. IV
a fully coherent stimulus and analyze the correlations a
function of the lateral coupling and the stimulus streng
From this analysis we will find under which conditions
visual stimulus composed of constant patches will disp
correlated firing within each patch and uncorrelated firi
between patches.

Subsequently, in Sec. IVB we will analyze how the co
relations within one patch depend on the coherence in
stimulus. We will see that correlations gradually disapp
when the incoherence increases.

A. Correlated firing in assemblies

We can perform a mean field computation of the me
firing rate in each of the patches. In addition, we can co
pute the correlations as well, making use of the linear
sponse theorem.

The energy of the system is given, in accordance with
~3.1!, by

2E5(
i
sihi~xW !1

1

2(i , j wi j sisj .

Consider the mean field~MF! energy

2EMF5(
i
si$hi~xW !1Hi%, ~4.1!

where we have introducedn mean fieldsHi that approximate
the lateral interactions. Define the mean field partition fun
tion

ZMF5(
sW
exp~2EMF!5P i2cosh~hi1Hi !.

The partition function can be computed in the mean fi
approximation@35#:

Z5(
sW
exp~2E!5(

sW
exp~2EMF1EMF2E!

5ZMF^exp~EMF2E!&MF

'ZMFexp~^EMF2E&!5Z8. ~4.2!

The mean field approximation is in the last step and is rela
to the convexity of the exponential function^expf&>exp̂ f&.
^ &MF denotes expectation with respect to the MF distrib
tion:

^ f &MF5
1

ZMF
(
sW

f ~sW !exp~2EMF!. ~4.3!

From Eq. ~4.3! we obtain ^si&MF5tanh(hi1Hi)5mi and
^sisj&MF5mimj , where we have introduced the mean fie
magnetizationmi . Thus we obtain the mean field free ener

n
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2F5 lnZ85(
i
ln@2cosh~hi1Hi !#2(

i
Himi

1
1

2(i , j wi jmimj . ~4.4!

The mean fieldsHi are given by minimizing the free en
ergy:

]F

]Hi
5~12mi

2!SHi2(
j
wi jmj D ~4.5!

or

mi5tanh~hi1Hi !5tanhS (
j
wi jmj1hi D . ~4.6!

We can go beyond the mean field predicti
^sisj&MF5mimj in the following way. First observe that tru
correlation is

^sisj&5
1

Z

d2Z

dhidhj
'
1

Z8

d2Z8

dhidhj
.

When we now make use of Eq.~4.4!, we must be aware tha
the mean fieldsHi depend on the external fieldshi through
Eq. ~4.6!. Therefore, using the approximate free energy
Eq. ~4.4!,

d

dhi
lnZ85S ]

]hi
1(

j

]Hj

]hi

]

]Hj
D lnZ85mi .

In the last step we have used Eq.~4.6!, by which all contri-
butions proportional to]Hj /]hi vanish. Thus

^sisj&'
1

Z8

d

dhj
~Z8mi !5mimj1

dmi

dhj
. ~4.7!

Equation~4.7! is known as the linear response theorem a
describes how spins correlate around the mean field solu
^sisj&MF5mimj .

By differentiating Eq.~4.6! we derive that

(
j

S d i j
12mi

2 2wi j Ddmj5dhi .

Thus

^sisj&2^si&^sj&5
dmi

dhj
5Ai j , ~4.8!

with Ai j
215d i j /(12mi

2)2wi j .
The matrixA21 is well known and controls the linea

stability of mean field solutions as a function of the couplin
Negative eigenvalues ofA21 indicate bifurcation to broken
solutions withmW Þ0. In @36–39#, such a bifurcation analysi
is performed for a large class of neural networks. In
present work we restrict our attention to stable solutions
useA to investigate the dependence of the correlations
defined in Eq.~4.8! on the stimulus coherence.
f

d
on

.

e
d
s

Whenmi5m independent ofi , A5A0 can be computed
using the Fourier transform. For the cubic two-dimensio
Ising lattice we find

Akl
0 5

1

~2p!2
E dpW GS pW , 1

12m2Dexp@ i ~kW2 lW !•pW #, ~4.9!

with G(pW ,y)5@y22w(cosp11cosp2)#
21 and *dpW

5*2p
p dp1*2p

p dp2. kW , lW denote the two-dimensional coord
nate vectors for the location of neuronk,l in the grid, respec-
tively. The result Eq.~4.9! is a straightforward generalizatio
of results by@40#, obtained forh5m50. Equation~4.9! can
be numerically integrated, using standard methods.

In Fig. 3 we show the mean firing rates and the corre
tions as a function of the lateral coupling strengthw for
various values of the stimulush. The left-hand figures are th
theoretical predictions from the mean field computation, E
~4.6!, and from the linear response function, Eq.~4.9!. The
right-hand figures are the corresponding numerical simu
tions. It is well known that the critical couplingwc50.44 is
incorrectly predicted by the mean field computati
wc,MF50.25. Nevertheless, the mean field computat
qualitatively reproduces the main characteristics that
found in the simulations. Sizable correlations for near
neighbors are found for smallh and w,wc . Long-range
correlations~next-nearest neighbor and more! requireh'0
andw'wc . We are mainly interested in the correlations
distance 1, because experimental findings indicate that
nificant correlations fall off within several mm@41#. Ana-

FIG. 3. Average neuron activity and correlations for coher
stimulus (xi51 for all i ) as a function of lateral coupling for vari
ous values of stimulus strengthh150 ~solid!, h150.1 ~dashed!,
andh150.3 ~dotted!. ~a! and~b! Average neuron activitym versus
couplingw. ~c! and ~d! Nearest neighbor correlationsA01 versus
couplingw. ~e! and~f! Next-nearest neighbor correlationsA02 ver-
sus couplingw. ~a!, ~c!, and~e! are results of the mean field com
putation.~b!, ~d!, and ~f! are simulations. The simulations are o
tained with a grid of 10310 neurons with periodic boundar
conditions. Results are computed by temporal averaging o
5000 updates per neuron. Errors in all quantities due to spa
averaging are less than 0.05.
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5854 55H. J. KAPPEN
tomical studies show that the probability of direct synap
connections is high when neurons are separated by this o
of distance.

We can apply the above analysis in each of the patche
constant stimulus. By choosingw'wc , h150, andh2,0
we assure that~1! in regions of the network that receiv
coherent inputa, correlations establish and neurons fire
approximately half their maximum firing rate and~2! in the
remaining regions the (a sensitive! neurons are more or les
quiescent. Simulations in a network consisting of
11311 grid of neurons with open boundary conditions a
shown in Fig. 4.

As is clear from the figure, all cells belonging to a cohe
ently stimulated part of the stimulus are highly correlate
whereas cells belonging to different regions~same or differ-
enta) are not correlated.

B. Coherence-dependent correlations

In this section we will study how correlations depend
the coherence in the stimulus. A family of stimuli is consi
ered, such thatp(xi61)5p6 .

For a fixed stimulus, the network can be divided into tw
populations of neurons, those that are stimulated by fea
a with local field h1 (xi51) and the remaining neuron
with local fieldh2 (xi521). We introduce two mean field
H1,2 which approximate the average contribution from t
lateral interactions in the1 and2 populations, respectively
Thus the mean fields in Eq.~4.1! become Hi

5 1
2 (11xi)H11 1

2 (12xi)H2 . In terms of the average quan
tities H6 andh6 the free energy Eq.~4.4! becomes

^F&x52p1ln@2cosh~h11H1!#2p2ln@2cosh~h21H2!#

2
nw

2
~p2

2 m2
2 1p1

2 m1
2 12p1p2m1m2!1p1H1m1

1p2H2m2 , ~4.10!

where we have introduced the mean field magnetizati

FIG. 4. Top left: Sensory input to layera is present in the two
black areas (h5h150) and absent elsewhere (h5h2524),
w50.4. Top right: CorrelationAi j with i the neuron located a
lattice site~6,4!. White ~black! encodeŝ sisj&2^si&^sj&50,1, re-
spectively. Bottom left: Correlation with point~3,3!. Bottom right:
Correlation with point~7,7!.
er

of

t

-
,

re

s

m6 for neurons coupling to the stimulush6 , respectively.
^ &x denotes spatial averaginĝy&x5(1/n)( i yi5p1y1

1p2y2 for some quantityy. n denotes the number of neigh
bors of each neuron@n54 for the two-dimensional~2D!
Ising model#.

The mean fieldsH6 are determined by extremizing th
free energy, givingH15H25H, with

H5nw~p1m11p2m2!, m65tanh~h61H !.
~4.11!

Thus in this approximation the lateral contributions to t
mean firing rates are identical (H15H25H) in the two
populations. The coupled system of Eq.~4.11! can be solved
using standard fixed point iteration. The phase plot is giv
for w andp1 for the choice of stimulus strengthh150 and
h2520.5 in Fig. 5. First note that for fully coherent stimu
lus (p151) the critical coupling isw50.25, as mentioned
before. For incoherent stimuli also a critical coupling exis
which increases with increasing incoherence. In phases 1
2, the network response is ‘‘data dominated’’ and ‘‘pri
dominated,’’ respectively. In phase 1 the neural activity
more determined by the contribution from the stimulus th
by the contribution from the lateral coupling and in phase
vice versa. In phase 1,H'2nw, except on the linep151
whereH50. In phase 2,H'6nw.

When the stimulus is incoherent, i.e., it takes differe
values at different sites in the network, the neural activ
mi5m6 @Eq. ~4.11!# is also site dependent. The site depe
dence breaks the translational invariance in the network
the Fourier transformation, used to arrive at Eq.~4.9!, can no
longer be applied. We can, however, perform a perturba
expansion ine i51/(12mi

2)21/(12m2) around the transla-
tionally invariant solution:

A5~A0
211e!215A0@12eA01~eA0!

21•••#,

whereA0 is the matrix given by Eq.~4.9! ande is a diagonal
matrix.m is the value of the constant neural activity arou
which we perturb, whose numerical value will be fixed lat

The first order correction is given by

FIG. 5. Phase plot as a function of lateral couplingw and stimu-
lus coherencep1 . h150 andh2520.5.
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dAkl
~1!52(

j
Ak j
0 e jAjl

0

52
^e&x

~2p!2
E dpW GS pW , 1

12m2D 2exp@ i ~kW2 lW !•pW #.

~4.12!

The second order correction is given by

dAkl
~2!5(

i j
Aki
0 e iAi j

0 e jAjl
0

5
^e2&x
~2p!4

E dpW 1E dpW 2GS pW 1 , 1

12m2D 2GS pW 2 , 1

12m2D
3exp@ i ~kW2 lW !•pW 1#1

^e&x
2

~2p!2
E dpW GS pW , 1

12m2D 3
3exp@ i ~kW2 lW !•pW #. ~4.13!

In arriving at Eqs.~4.12! and ~4.13! we have used tha
(kykexp(ikW•pW)'(2p)2^y&xd(pW) for yk5ek ,ek

2 , respectively.
In this perturbation expansion, we have the freedom

choose the homogeneous solutionm around which we ex-
pand. We chosem such that ^e&x50, which yields
1/(12m2)5^1/(12m2)&x and which minimizes ^e2&x
5p1p2@1/(12m1

2 )21/(12m2
2 )#2.

Finally, we obtain

Akl5
1

~2p!2
E dpW GS pW ,K 1

12m2 L
x

2^e2&xCD
3exp@ i ~kW2 lW !•pW #1O~e3!, ~4.14!

with

C5
1

~2p!2
E dpW GS pW ,K 1

12m2 L
x

D . ~4.15!

We are now able to compute the effect of stimulus coh
ence on the correlations between stimulated neurons.
chose the lateral couplingw50.35 in our simulations to be
close to the critical coupling but not too close to avoid pro
lems with mixing of phases. For each coherence, we c
pute the mean firing rates from Eq.~4.11!. Subsequently, we
compute the correlations from Eqs.~4.14! and ~4.15!. The
results are given in Fig. 6.

The results from our analytical computation are in qua
tative agreement with the simulations. In Figs. 6~a! and 6~b!
we see a monotone increase of the correlations between
of stimulated neighboring neurons with the coherence in
stimulus. In addition, we see that also the average firing
these neurons is strongly dependent on the coherence.
for incoherent stimuli we observe low incoherent firing ra
and for coherent stimuli we observe a correlated firing a1

2

their maximal firing rate 1/t.
We observe that the relation between coherence and

relations is strongly influenced by the strength of the stim
lus h1 . h1 should be close to zero, which means that
external stimulus and the neuron threshold should have s
o

r-
e

-
-

-

irs
e
f
us
s

or-
-
e
i-

lar values. Deviations from this assumption are shown
Figs. 6~c! and 6~d! and Figs. 6~e! and 6~f!, respectively. For
h1.0 a fully coherent stimulus leads to too high mean firi
rates, which reduces the correlations@see Eq.~4.8!#. In this
case intermediate coherence leads to maximal correlati
For h2,0 for no stimulus there are sufficiently high firin
rates to produce strong correlations.

In Fig. 7 we give an example of the spiking behavior
the network under various stimulus conditions.

V. DISCUSSION

A. Feature linking

We have proposed to use a network of binary spins
study the experimentally observed phenomenon of stimu
dependent correlations in the visual cortex. As a crude
proximation to model the cortex we have proposed a sepa
Ising model for each of a number of distinct feature valu

We have shown how the correlations depend on
strength of the stimulus, on the strength of the lateral c
nectivity, as well as on the coherence of the stimulus. Th
results were obtained using a mean field computation for
average firing rates in the stimulated and nonstimula
populations, and using a linear response calculation for
leading order correlations. These calculations were veri
with numerical simulations.

We conclude that correlations between connected neu
can be present or absent depending on the coherence i
stimulus. This effect of dynamic linking is achieved witho
fast synaptic changes and is caused by the coherence i
stimulus only. In addition, we observe that also the me
firing rates are strongly affected by the coherence in
stimulus.

Coherence in the stimulus was controlled by varying
percentage of ‘‘on’’ stimuli, independently for each stimulu

FIG. 6. CorrelationsA01 ~solid line!, m1 ~dashed line!, and
m2 ~dash-dotted line! as a function of stimulus coherencep1 .
Left-hand figures are analytical results withw50.23. Right-hand
results are simulations withw50.35 in a 10310 grid with periodic
boundary conditions. Results are computed by temporal avera
over 5000 updates per neuron. Errors in all quantities due to sp
averaging are less than 0.05~a! and ~b! h150 andh2520.5. ~c!
and ~d! h150.1 and h2520.5. ~e! and ~f! h1520.1 and
h2520.5.
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location. This gives a one parameter family of stimuli whe
coherence is in fact the ‘‘luminance’’~fraction of pixels
‘‘on’’ !. Clearly, other families of stimuli can be chosen. F
instance, in@42# the stimulus itself is modeled as an Isin
model. The stimulus is now defined by two paramete
which are the lateral coupling and the external field. One
then consider the one-dimensional family of stimuli defin
by varying the lateral coupling and with external field ze
Due to the lateral coupling, these stimuli have the prope
that for the same luminance, the coherence in the stimulu
larger than for those considered in this paper. Fully cohe
stimuli and fully incoherent stimuli are the same in bo
approaches. One can analyze the phase diagram in the
field approach, as was done by@42#, and one can probably
compute the correlations using the linear response comp
tion, in a similar way as was done in this paper. It should
expected that the results from such an analysis will be qu
tatively the same as those obtained in this paper, with
difference that one will observe increased correlations at
same luminance level, compared to the results presente
this study.

Clearly, we are not proposing the Ising model as a seri
computational model for the cortex. An important restricti
of the present work is that feature sensitivity of neurons
been discretized and neurons have been assumed to be
sensitive to one feature value. In addition, we assumed
only neurons that are sensitive to identical features
coupled horizontally. One should formulate models w
more complex horizontal interactions, for instance, fully co
nected excitatory interaction within hypercolumns or inhi
tion within hypercolumns which leads to competition b
tween feature detectors~Potts model!. In the present model
receptive fields are nonoverlapping~spatially! and are
strongly specialized. One should investigate the effects
redundancy such as spatial overlap and coarse coding o
correlations.

The analytical results obtained pertain to the equilibriu
situation. To relate the correlations to functional behavior

FIG. 7. Example of the spiking behavior of the network und
various stimulus conditions. Top row shows three stimulus con
tions with increasing coherence of featurea. Second and third rows
show a short segment of the spike trains of two neighboring n
rons that both receive stimulusa. The total length of the train is
50t seconds. Bottom row shows time-delayed crosscorrellogr
^si(0)sj (t)& ~solid line! and square mean firing rates^si&

2 ~dashed
line! as a function of time differencet.
r

,
n

.
y
is
nt

ean

ta-
e
li-
e
e
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s
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at
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of
the

it

is important to establish at what time scales the correlati
establish after onset of the stimulus. For unfrustrated syst
of the type that we have studied so far, this may be analy
within the linear response approach.

In the present work we have established the stimulus
pendence of correlated firing for fixed lateral~and feed-
forward! connections. In a more realistic network, the late
connectivity would arise from learning. The connections th
will establish will be between those neurons that are co
lated in the stimulus environment. It is interesting to no
that the most straightforward learning paradigm for stoch
tic networks, i.e., the Boltzmann machine learning rule,
indeed based on correlated activity^sisj&.

B. Scene segmentation

In this paper we have shown how correlations can es
lish in stochastic networks, and how these correlations
pend on the coherence in the stimulus ensemble. We h
demonstrated how this coherence dependence can be
lyzed theoretically using mean field and linear respon
theory.

However, the simple Ising model is quite far remov
from how it is generally assumed that patterns are store
the cortex. In addition, it is not clear how this mechanis
can be used for scene segmentation. Therefore in this se
we will give a heuristic argument for how the main ideas
this paper can be accommodated in a more realistic set
We plan to provide a more thorough treatment in the futu

Consider a network ofn neuronssi561, each encoding
a different feature@25# ~or orbit assembly@23#!. Suppose that
the objects are nonoverlapping, i.e., features appear uniq
in one object and not in others. Suppose the objects are
resented neurally byp patterns j i

m561,m51, . . . ,p.
j i

m561 denotes the presence or absence of featurei in ob-
ject m. Suppose that as a result of training, positive conn
tionsw1 develop between neurons encoding features of
same object and negative connectionsw2 develop between
neurons encoding features of different objects. Example
such learning rules are given in@23,25#.

The energy of the system in the absence of external sti
lus is given by

2E5(
i

(
j. i

wi j sisj1u(
i
si .

By choosingu52w2n(2/p21) one can easily show tha
the patternsj i

m are global minima ofE. Thus the equilibrium
distributionp(s)5(1/Z)exp@2bE(s)# hasp peaks around the
global minima. Additionally, local minima ofE may give
rise to small subpeaks, which we will ignore here. As a ve
crude approximation, therefore, we have

^si&5(
s
sip~s!'

1

p(m j i
m5

22p

p

and

r
i-

u-

s
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^sisj&2^si&^sj&'H 4

p S 12
1

pD when i , j belong to the same pattern

2
4

p2
when i , j belong to different patterns.

Thus in the absence of a stimulus all neurons fire with the same rate, but this firing is correlated depending on whe
neurons encode features belonging to the same or different objects.

Consider now that an external visual scene is presented consisting of a subsetS of q objects out of thep objectsjm. Now,
an additional term should be added toE of the form2( ihi

esi , with hi
e5h(mPSj i

m the external field contribution due to th
subset of patterns that are present in the scene.h is a free parameter, related to the strength of the feed-forward connec
between the retinal image and the present layer. The effect is that the global minimum ofE will by attained byjm,mPS,
whereas the remaining objects will become local minima, with energy 2hn/p higher than the minimal energy. By the sam
argument as above we have

^si&'H 22q

q
when i belongs to mPS

21 when i belongs to m¹S

and

^sisj&2^si&^sj&'5
4

q S 12
1

qD when i and j belong to the samemPS

2
4

q2
when i and j belong to differentm,nPS

'0 when i or j belongs to m¹S.
q
d
g

xi-
im

e-
-
e
ro
e
ha
a
n
ni
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a

c-
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u-
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Thus all neurons that encode features that are present in
scene fire with the same rate and all other neurons are
escent. The firing between active neurons is correlated
pending on whether the neurons encode features belon
to the same or different objects.

A comment is in order here on the validity of the appro
mation to replace the sum over all states by just the max
of the probability distribution. Whenb→` this approxima-
tion is exact. However, in this limit, the transition times b
tween theq different phases also become infinite, which im
plies that any biologically reasonable dynamics will g
stuck in one of the phases. In other words, ergodicity is b
ken and ensemble average and time average can no long
identified. Thusb should be chosen small enough such t
the transition times between the optima are reasonably sm
For lowerb, the bold approximation above gets worse a
worse, because also suboptimal states will contribute sig
cantly to the sum over states. However, as was shown in@43#
for continuous variables, a Gaussian approximation can s
marize effectively the contribution of all states in theq op-
the
ui-
e-
ing

a

t
-
r be
t
ll.
d
fi-

-

timal bases of attraction. It should be expected that th
contributions do not qualitatively change the conclusio
drawn above.

The difference between the mechanism for feature bi
ing based on oscillations and the above mechanism is q
striking. The oscillatory solution to segmentation is to rep
sent the different objects one after another in time like
periodic movie@23,25#. The solution based on correlated a
tivity is, on the other hand, not periodic but stationary. The
exists a time-independent equilibrium probability distrib
tion and the network is given a stochastic dynamics such
over long times all states are visited with this probability. A
we saw, this leads to time-independent correlations betw
neurons depending to which object they belong.
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